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Distribution of persistent sites in diffusing systems

Damian H. Zanette
Consejo Nacional de Investigaciones Ciéinsis y Tenicas, Centro Atmico Bariloche and Instituto Balseiro,
8400 Bariloche, R1 Negro, Argentina
(Received 10 September 1996

The evolution of a diffusing field whose initial condition is given by a Gaussian random variable with zero
mean is considered. It has been shown that, at tiniee number of sites where the field has not changed its
initial sign decays aa~t~?, whered is a nontrivial exponent. Here the spatial distribution of these persistent
sites in a one-dimensional system is numerically studied. It is shown that the two-point correlation function
C(x,t) decays, for smalk, as C(x,t)~x"2%. This power-law decay extends up to a typical length that
increases ag.~tY?, beyond whichC(x,t) is practically constant. As time elapses, the correlation function
approaches a well-defined stationary state and, at any time, it collapses, if properly rescaled, to a universal
curve that characterizes the form of the persistence don{84863-651X97)05503-1

PACS numbes): 05.60+w, 05.20—y, 05.40:+], 05.50:+q

The relevance of the diffusion equation In this paper, we aim at characterizing the spatial distri-
bution of persistent sites in a one-dimensional diffusion
dip(X,t) =DV2p(x,t) (1) problem through the numerical calculation of the corre-

sponding two-point correlation function. To begin with, let
to the description of a wide class of natural systems standgs define thepersistence indexr(x,t) as
beyond any doubt. Because of its linearity, the general solu-
tion to this equation in the-dimensional unbounded space, 1 if sgng(x,t’)=sgnp(x,0) for all t'<t

= .
w0 0 otherwise.

¢(x,t)=(47rDt)‘d’2J d9%exd — (x—x')%/4Dt]¢(x’,0), 3)
)

can be readily obtained. The spatiotemporal dependence
the kernel of this solution makes evident the well-known
dynamical exponent of the diffusion proces€~t with
z=2. However, it has very recently been pointed out that,tIm
surprisingly enough, a second nontrivial exponent exists, as-
sociated with some dynamical aspects of this profes. (m(x,)=At"". 4

Consider the diffusion process for an initial condition
#(x,0) given by a Gaussian stochastic variable with zerdrigure 1 shows the typical time evolution @#(x,t)) from a
mean. As time elapses, the figfgx,t) at a given point will
approach its vanishing asymptotic value, typically changing |
its sign several times during the evolution. The numbef
persistentsites, i.e., the sites where the initial signgfhas
remained unchanged along the evolution up to a given time
t, is therefore expected to decay withlt has been shown
that this decay is algebraio~t~?, with a nontrivial expo-
nent that depends on the spatial dimension and on the space=
correlation properties of the initial condition.

In Ref.[1], thispersistence exponehas been analytically
derived within an approximated formalism based on the
clever observation that the stochastic process defined by the
normalized diffusive field at a given pointx,
X(t)=p(x,1)/{p(x,1)?), is stationary in the variable
T=Int. There the relevance of these features to problems 0 1o 102 10° 10 109
such as bimolecular reaction-diffusion processes has also
been discussed. Other wor 3] have pointed out that non-
trivial persistent exponents occur also in problems related to FIG. 1. Temporal evolution of the mean persistence index in a
diffusion, such as Glauber spin dynamics, whérean be single realization over a ¥@site one-dimensional lattice. The
exactly calculated, and other nonequilibrium critical phe-straight line in this log-log plot correponds to an exponent
nomena. 6=0.1207.

Therefore, 7(x,00=1 for all x and, in addition,
rﬁ(x,t)zz m(X,t). According to the analytical and numerical
results in[1], the mean value of the persistence index over
the system decays, for long times, as a well-defined power of
e

<z (x

time
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FIG. 2. Persistence correlation function vs position for several FIG. 3. Normalized correlation function vs normalized coordi-
times, for the same realization as in Fig. 1. The straight line in thisnate (see the tejtfor several times. Note the collapse to a single,
log-log plot corresponds to an exponept 0.2414. well-defined curve. The straight line in this log-log plot corresponds

to an exponent =0.2414. lts intersection with the line
numerical simulation performed as explained below. ThisC’(x’,t)=1 defines the normalized crossover coordindte
case corresponds to a one-dimesional lattice, for which

6~0.1207. over lengthx(t). For x>x;, the correlation is practically
The simplest characterization of the spatial distribution ofconstant and can be seen to equal the mean value of the
persistent sites is given by the correlation function persistence index. On the other hand, xerx., C(x,t) de-
4 cays fromC(0t)=1 asx grows. At the crossover, the cor-
Cixt)= Jdyma(y,hm(y+xt) (m(y,hm(x+y,1) relation seems to have a depletion zone, indicating the limit
: fd9ya(y,t)? (m(y,1)) ' of the persistence domains.
(5) The smallx spatial dependence @ (x,t) exhibits two

) ) ] ) o remarkable featuresi) The persistence correlation follows a
This two-point correlation function satisfigs(x,0)=1 for power-law decay (x,t)~Cx~ 7, even from the smallest val-
all x and C(0t)=1 for all t. For sufficiently largex, the a5 ofx. (ii) This power-law decay is independent of time, so
persistence index is expected to be uncorrelated, so thgta: it represents the large-time asymptotic valueCox, t)
(m(y. ) m(y+x.t))~(m(y,t))(m(y+x,t)) and for every pointx: C(x,t)—Cx~ 7 for t—o. The exponent

- A0 7 in the spatial decay o€(x,t) is not independent of the
COuO~{m(x,n)~At"". © persistence exponem, but they are connected through the

The crossover from the smalldecay ofC(x,t) to the large- dynamical exponent _of diffusion. I_n faqt, the crossover
x asymptotic valueAt™? defines a typical length(t), Iengthx9(t) can be d.eflned as the point of intersection of the
which characterizes the size of thersistence domainslote WO regimes of spatial dependenceGix,t):
that, since the only dynamical process that drives the system Cx- 7= At—? ®)
is simple diffusion, the crossover lengti(t) should scale c '
with time with the usual exponent,(t)~BtY2

Here we study the evolution of(x,t) from numerical
simulations on a lattice. As suggested|[i, the diffusion
equation(1) can be discretized, both in space and in time, as n=26 9)

Taking into account that, as stated beforgs Bt'/, we ob-
tain

_ andC~AB?”. The straight line in Fig. 2 stands, in the log-log

P traAy= ¢(x,t)+a% [e(y.0=¢(x 0], (D) plot, for a power-law decay with exponent= 0.2414, which
corresponds to the value @f for one-dimensional systems.

with a=DAt/Ax? and where the sum runs over the nearestrhe agreement with the numerical simulations supports our

neighbors of site. TakingAx=1 andAt=1, this numerical previous argument.

recursion scheme gives a particularly fast convergence of the The scaling features discussed above suggest that the cor-

persistence index to its asymptotic power-law decay forelation profiles can collapse to a universal, time-

a=1/4d, whered is the dimension of the system. We work independent curve if botlC(x,t) and x are conveniently

on aoé)ne-dimensional %asite lattice up to times of the order scaled. Since, for<x., C(x,t)xx 7, the scaled quantities

of 10° units.

Figure 2 shows the result f@(x,t) as a function ok in Crx )= C(x,t) i X X 10
a typical (single) realization for several values of It corre- X O=7F7 X T (AU 0TI (10

sponds to the same realization that produced the data of Fig.
1. As advanced above, for moderately large timeéx,t) maintain the same power-law interdependence for sriall
shows two well-defined regimes, which match at the crossFor largex’ instead,C’(x’,t) approaches unity. In Fig. 3,
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some of the numerical data of Fig. 2 have been scaled a@s simple as diffusion seems to indicate that coupled ele-
cording to Eq.(10). Their collapse to a single curve is ap- ments are able to display some kind of complexity even un-
parent. This curve provides then a statistical description ofler linearity conditions.
the persistence domains at any time. It shows the small- The results presented here show how this kind of com-
power-law decay of the correlation, stressed in Fig. 3 by glexity reflects in the spatial statistics of the system, through
straight line, which extends up to the scaled crossover lengtthe occurrence of a power-law decay in the correlation func-
x¢~0.13. The asymptotic large-value C'(x’,t)=1 is at- tion of the persistence index. This power law, which, accord-
tained beyond the depletion zone mentioned above. ing to the previous discussion, is strongly linked by diffusion
The recurrent appearance of power laws in the geometrio the algebraic time decay of the persistent site number, is
and in the evolution of dynamical systems has been recogexpected to appear in higher-order statistical features as well.
nized as a clue to the complex interplay of the elements thaWloreover, in view of the results obtained for the persistence
constitute such systems. In fact, fractfdd, criticality [5],  index in higher-dimensional systems, it can be conjectured
and algebraic time depender@ are typical features in the that the power-law dependence of the persistence correlation
macroscopic dynamics of many coupled elements. The pregunction is a generic characteristic of diffusion, independent
ence of a nontrivial power-law time dependence in a problenof the spatial dimension.
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