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Distribution of persistent sites in diffusing systems

Damián H. Zanette
Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, Centro Ato´mico Bariloche and Instituto Balseiro,

8400 Bariloche, Rı´o Negro, Argentina
~Received 10 September 1996!

The evolution of a diffusing field whose initial condition is given by a Gaussian random variable with zero
mean is considered. It has been shown that, at timet, the number of sites where the field has not changed its
initial sign decays asn;t2u, whereu is a nontrivial exponent. Here the spatial distribution of these persistent
sites in a one-dimensional system is numerically studied. It is shown that the two-point correlation function
C(x,t) decays, for smallx, as C(x,t);x22u. This power-law decay extends up to a typical length that
increases asxc;t1/2, beyond whichC(x,t) is practically constant. As time elapses, the correlation function
approaches a well-defined stationary state and, at any time, it collapses, if properly rescaled, to a universal
curve that characterizes the form of the persistence domains.@S1063-651X~97!05503-7#

PACS number~s!: 05.60.1w, 05.20.2y, 05.40.1j, 05.50.1q
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The relevance of the diffusion equation

] tf~x,t !5D¹2f~x,t ! ~1!

to the description of a wide class of natural systems sta
beyond any doubt. Because of its linearity, the general s
tion to this equation in thed-dimensional unbounded spac

f~x,t !5~4pDt !2d/2E ddxexp@2~x2x8!2/4Dt#f~x8,0!,

~2!

can be readily obtained. The spatiotemporal dependenc
the kernel of this solution makes evident the well-know
dynamical exponent of the diffusion process,xz;t with
z52. However, it has very recently been pointed out th
surprisingly enough, a second nontrivial exponent exists,
sociated with some dynamical aspects of this process@1,2#.

Consider the diffusion process for an initial conditio
f(x,0) given by a Gaussian stochastic variable with z
mean. As time elapses, the fieldf(x,t) at a given point will
approach its vanishing asymptotic value, typically chang
its sign several times during the evolution. The numbern of
persistentsites, i.e., the sites where the initial sign off has
remained unchanged along the evolution up to a given t
t, is therefore expected to decay witht. It has been shown
that this decay is algebraic,n;t2u, with a nontrivial expo-
nent that depends on the spatial dimension and on the s
correlation properties of the initial condition.

In Ref. @1#, thispersistence exponenthas been analytically
derived within an approximated formalism based on
clever observation that the stochastic process defined by
normalized diffusive field at a given point x,
X(t)5f(x,t)/^f(x,t)2&, is stationary in the variable
T5 lnt. There the relevance of these features to proble
such as bimolecular reaction-diffusion processes has
been discussed. Other works@2,3# have pointed out that non
trivial persistent exponents occur also in problems relate
diffusion, such as Glauber spin dynamics, whereu can be
exactly calculated, and other nonequilibrium critical ph
nomena.
551063-651X/97/55~3!/2462~3!/$10.00
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In this paper, we aim at characterizing the spatial dis
bution of persistent sites in a one-dimensional diffusi
problem through the numerical calculation of the cor
sponding two-point correlation function. To begin with, l
us define thepersistence indexp(x,t) as

p~x,t !5H 1 if sgnf~x,t8!5sgnf~x,0! for all t8<t

0 otherwise.
~3!

Therefore, p(x,0)51 for all x and, in addition,
p(x,t)25p(x,t). According to the analytical and numerica
results in@1#, the mean value of the persistence index ov
the system decays, for long times, as a well-defined powe
time

^p~x,t !&'At2u. ~4!

Figure 1 shows the typical time evolution of^p(x,t)& from a

FIG. 1. Temporal evolution of the mean persistence index i
single realization over a 105-site one-dimensional lattice. Th
straight line in this log-log plot correponds to an expone
u50.1207.
2462 © 1997 The American Physical Society
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numerical simulation performed as explained below. T
case corresponds to a one-dimesional lattice, for wh
u'0.1207.

The simplest characterization of the spatial distribution
persistent sites is given by the correlation function

C~x,t !5
*ddyp~y,t !p~y1x,t !

*ddyp~y,t !2
5

^p~y,t !p~x1y,t !&

^p~y,t !&
.

~5!

This two-point correlation function satisfiesC(x,0)51 for
all x andC(0,t)51 for all t. For sufficiently largex, the
persistence index is expected to be uncorrelated, so
^p(y,t)p(y1x,t)&'^p(y,t)&^p(y1x,t)& and

C~x,t !'^p~x,t !&'At2u. ~6!

The crossover from the small-x decay ofC(x,t) to the large-
x asymptotic valueAt2u defines a typical lengthxc(t),
which characterizes the size of thepersistence domains. Note
that, since the only dynamical process that drives the sys
is simple diffusion, the crossover lengthxc(t) should scale
with time with the usual exponentxc(t)'Bt1/2.

Here we study the evolution ofC(x,t) from numerical
simulations on a lattice. As suggested in@1#, the diffusion
equation~1! can be discretized, both in space and in time,

f~x,t1Dt !5f~x,t !1a(
$y%

@f~y,t !2f~x,t !#, ~7!

with a[DDt/Dx2 and where the sum runs over the near
neighbors of sitex. TakingDx[1 andDt[1, this numerical
recursion scheme gives a particularly fast convergence o
persistence index to its asymptotic power-law decay
a51/4d, whered is the dimension of the system. We wo
on a one-dimensional 105-site lattice up to times of the orde
of 105 units.

Figure 2 shows the result forC(x,t) as a function ofx in
a typical~single! realization for several values oft. It corre-
sponds to the same realization that produced the data of
1. As advanced above, for moderately large times,C(x,t)
shows two well-defined regimes, which match at the cro

FIG. 2. Persistence correlation function vs position for seve
times, for the same realization as in Fig. 1. The straight line in
log-log plot corresponds to an exponenth50.2414.
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over lengthxc(t). For x.xc , the correlation is practically
constant and can be seen to equal the mean value of
persistence index. On the other hand, forx,xc , C(x,t) de-
cays fromC(0,t)51 asx grows. At the crossover, the cor
relation seems to have a depletion zone, indicating the li
of the persistence domains.

The small-x spatial dependence ofC(x,t) exhibits two
remarkable features.~i! The persistence correlation follows
power-law decayC(x,t)'Cx2h, even from the smallest val
ues ofx. ~ii ! This power-law decay is independent of time,
that it represents the large-time asymptotic value ofC(x,t)
for every pointx: C(x,t)→Cx2h for t→`. The exponent
h in the spatial decay ofC(x,t) is not independent of the
persistence exponentu, but they are connected through th
dynamical exponent of diffusion. In fact, the crossov
lengthxc(t) can be defined as the point of intersection of t
two regimes of spatial dependence inC(x,t):

Cxc
2h5At2u. ~8!

Taking into account that, as stated before,xc'Bt1/2, we ob-
tain

h52u ~9!

andC'ABh. The straight line in Fig. 2 stands, in the log-lo
plot, for a power-law decay with exponenth50.2414, which
corresponds to the value ofu for one-dimensional systems
The agreement with the numerical simulations supports
previous argument.

The scaling features discussed above suggest that the
relation profiles can collapse to a universal, tim
independent curve if bothC(x,t) and x are conveniently
scaled. Since, forx,xc , C(x,t)}x

2h, the scaled quantities

C8~x8,t ![
C~x,t !

At2u , x8[
x

~At2u!21/h }
x

t1/2
~10!

maintain the same power-law interdependence for smallx8.
For largex8 instead,C8(x8,t) approaches unity. In Fig. 3

l
s

FIG. 3. Normalized correlation function vs normalized coord
nate~see the text! for several times. Note the collapse to a sing
well-defined curve. The straight line in this log-log plot correspon
to an exponent h50.2414. Its intersection with the line
C8(x8,t)51 defines the normalized crossover coordinatexc8
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some of the numerical data of Fig. 2 have been scaled
cording to Eq.~10!. Their collapse to a single curve is ap
parent. This curve provides then a statistical description
the persistence domains at any time. It shows the smax
power-law decay of the correlation, stressed in Fig. 3 b
straight line, which extends up to the scaled crossover len
xc8'0.13. The asymptotic large-x valueC8(x8,t)51 is at-
tained beyond the depletion zone mentioned above.

The recurrent appearance of power laws in the geom
and in the evolution of dynamical systems has been rec
nized as a clue to the complex interplay of the elements
constitute such systems. In fact, fractals@4#, criticality @5#,
and algebraic time dependence@6# are typical features in the
macroscopic dynamics of many coupled elements. The p
ence of a nontrivial power-law time dependence in a prob
c-
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as simple as diffusion seems to indicate that coupled
ments are able to display some kind of complexity even
der linearity conditions.

The results presented here show how this kind of co
plexity reflects in the spatial statistics of the system, throu
the occurrence of a power-law decay in the correlation fu
tion of the persistence index. This power law, which, acco
ing to the previous discussion, is strongly linked by diffusi
to the algebraic time decay of the persistent site numbe
expected to appear in higher-order statistical features as w
Moreover, in view of the results obtained for the persisten
index in higher-dimensional systems, it can be conjectu
that the power-law dependence of the persistence correla
function is a generic characteristic of diffusion, independ
of the spatial dimension.
@1# S.N. Majumdaret al., Phys. Rev. Lett.77, 2867~1996!.
@2# B. Derrida, V. Hakim, and R. Zeitak, Phys. Rev. Lett.77, 2871

~1996!.
@3# S.N. Majumdaret al., Phys. Rev. Lett.77, 3704~1996!.
@4# J. Feder,Fractals ~Plenum, New York, 1988!.
@5# P. Bak, Physica A163, 403 ~1990!.
@6# K. Kuzokov and P. Kotomin, Rep. Prog. Phys.51, 1479

~1988!.


